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We consider the flow of a compressed Newtonian fluid in a biological bearing that has a porous
wall, i.e., in a hip joint. The system is modeled by two curvilinear surfaces and a porous wall
bounded by a curved impermeable surface. The flow in the gap is considered with account for inertia
forces. The Navier−Stokes and Poisson equations used are separated with the aid of the Mor-
gan−Cameron approximation. A solution which relies on the averaging of inertia forces is obtained
in a closed form. A bearing of spherical shape is considered as an example.

Introduction. Joints are biological bearings that connect the elements of human limbs. Depending on
localization, they can be spherical, as in the case of hip joints, quasispherical for shoulder joints, or quasi-
cylindrical for elbow and knee joints. These combinations are arranged like any other bearings. They consist
of a pin and a coupling whose roles in a joint are played by the head of the bone and the socket-subheel.
Both the "heel" and "subheel" of the joint are surrounded by cartilage, which is a porous structure having
antifriction properties. On the surface of the heel the cartilage is more compact in structure than on the sur-
face of the subheel, and in the first approximation it can be represented as an impermeable wall. The subheel
is less dense in structure, and due to its larger thickness it can be modeled as a porous permeable layer.
Biobearings are lubricated with synovial fluid, which has non-Newtonian properties. Its non-Newtonian be-
havior owes its origin not to the abnormal viscosity but rather to the difference of normal stresses being
different from zero.

The aim of the present work is to give a mathematical description of the process of momentum trans-
fer in biobearings. The hip joint is one of the most loaded joints in the human body. Hence, the proposed
analysis may turn out to be useful for contemporary orthopedics.

In the work, the following assumptions were made: (a) the surfaces of the bearing are bodies of revo-
lution with a common symmetry axis; (b) the synovial fluid is Newtonian; (c) dynamic loading of the bearing
produces the effect of punching of the fluid film and leads to the necessity of taking into account inertia
effects.

The above-considered problem in a biobearing with a permeable wall is analyzed with the aid of a
unique method of averaging inertia forces [7−9].

Equations of Motion in the Gap of a Bearing. Let us consider a radial bearing with a working
surface of curvilinear profile (Fig. 1). The geometry of the upper boundary of the porous layer is described
by the function R(x) of the boundary radius. The fluid film thickness is expressed by the function h(x, t), and
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the thickness of the porous layer is constant, H = const. The corresponding curvilinear orthogonal coordinate
system (x, θ, y) is also shown in Fig. 1.

Using the assumptions of hydrodynamic lubrication, the equations of motion of the Newtonian fluid,
with account for the axial symmetry, can be presented in the form [7−9]
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Fig. 1. Configuration of the radial bearing with a porous wall.
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The solution of Eq. (6) has the form

vx = 
f
2

 (y2 − yh) . (8)

The substitution of Eq. (8) into Eq. (1) leads to a modified Reynolds equation:
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in which the function f is equivalent to the pressure gradient.
For the solution of Eq. (9) we consider the flow of liquid in a porous layer. According to the Darcy

equations, the flow velocity components are
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The transverse velocity component must be continuous on the interface between the porous wall and
the liquid film and equal to VH. Consequently, with account for Eqs. (4) and (10) we have
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On substitution of Eq. (10) into the continuity equation written similarly to Eq. (1) for the liquid in
the porous wall, we obtain the Poisson equation
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and using the Morgan−Cameron approximation [10], we find
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The substitution of Eq. (13) into Eq. (11) yields the modified Reynolds equation
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Its solution is
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From Eq. (8), with Eq. (15) taken into account, we find the differential equation for the derivative of
the pressure dp ⁄ dx. Its integration yields

p (x, t) = p0 − 12µ [S0 − S (x, t)] − ρ [I0 − I (x, t)] + 
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where
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The load-carrying capacity of the bearing is described by the expression
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Application of the "Spherical Bearing" Method (Fig. 2). Let us introduce the following dimension-
less parameters:
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We avail ourselves of the relations for pressure distribution in the gap of the bearing and for the
load-carrying capacity of the latter (assuming that K < 1 and ignoring the terms that contain the parameter K
raised to a power greater than three):
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Fig. 2. Configuration of the spherical biobearing.
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in which Fp and FN are given by the relations
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The pressure distribution and the load-carrying capacity of the bearing are shown in Figs. 3 and 4.
Conclusions. The specific case of a spherical biobearing formulated on the basis of the foregoing

general propositions allow the following conclusions:
(a) account for inertia effects in the acceleration of the punched film (Re ≠ 0, A ≠ 0) leads to a con-

siderable increase in the modeled pressure in comparison with the case where inertia forces are disregarded:
(Re = 0, A = 0);

(b) when the permeability of the wall is small (K < 1), the pressure turns out to be much lower than
in the case of an impermeable wall;

(c) the change in pressure entails a corresponding change in the load-carrying capacity of the biobear-
ing.

Fig. 3. Pressure distribution in the gap of the spherical biobearing.

Fig. 4. Load-carrying capacity of the spherical biobearing.
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NOTATION

R(x), radius of the upper boundary of the porous layer; H = const, thickness of the porous layer; Vx

and Vy, components of the fluid velocity vector in the porous layer; VH, transverse component of velocity on
the upper boundary of the porous layer; Rs, radius of the coupling; Rr, radius of the pin; P, hydrodynamic
pressure in a porous layer; p, hydrodynamic pressure in the gap; h(x, t), fluid film thickness; h = ∂h ⁄ ∂t; vx

and vy, components of the vector of the fluid velocity in the gap; e, distance between the centers of the
circles that form the surfaces of the pin and coupling of the bearing; Φ, permeability of the porous layer; ρ,
fluid density; µ, fluid viscosity; ϕ = ξ ⁄ R, angular measure of the curvilinear coordinate x. Subscripts: 0, the
value of the parameter at the exit from the bearing. Superscript: prime, derivative with respect to x.
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